
Secure Information Flow in a Multi�threaded Imperative Language

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ������ USA

smithg�cs�fiu�edu

Dennis Volpano

Computer Science Department

Naval Postgraduate School

Monterey� CA ������ USA

volpano�cs�nps�navy�mil

Abstract

Previously� we developed a type system to ensure secure
information �ow in a sequential� imperative programming
language �VSI���� Program variables are classi�ed as ei�
ther high or low security	 intuitively� we wish to prevent
information from �owing from high variables to low vari�
ables� Here� we extend the analysis to deal with a multi�
threaded language� We show that the previous type system
is insu
cient to ensure a desirable security property called
noninterference� Noninterference basically means that the
�nal values of low variables are independent of the initial
values of high variables� By modifying the sequential type
system� we are able to guarantee noninterference for con�
current programs� Crucial to this result� however� is the use
of purely nondeterministic thread scheduling� Since imple�
menting such scheduling is problematic� we also show how
a more restrictive type system can guarantee noninterfer�
ence� given a more deterministic �and easily implementable�
scheduling policy� such as round�robin time slicing� Finally�
we consider the consequences of adding a clock to the lan�
guage�

� Introduction

The success of mobile code technologies depends in large
part on what kinds of security guarantees can be made for
clients executing the code� Among the concerns here is en�
suring that code respects a client
s privacy� so that sensitive
information is not improperly disclosed� Current software
approaches to security address the issue of protecting pri�
vacy by introducing protection domains and access privi�
leges� The basic idea is to specify� via a security policy� a
set of privileges for a piece of code based on its digital sig�
nature� A check is then made for a certain access privilege
when the code attempts to cross a domain boundary� say
for example if it attempts to access the local �le system� If
the privilege has been granted� execution proceeds� Keep
in mind that the decision is made here against a security
policy for the code
s signature� not the code itself� This is
the approach taken in the security architecture of the Java

To appear in the ��th ACM Symposium on Principles of
Programming Languages� San Diego� California� January
������ �����

Developer
s Kit �JDK� ��� �GMPS��� and in the extended
stack introspection proposal of �WBDF����

But suppose we can prove that a program satis�es a se�
cure information �ow property that guarantees that the pro�
gram respects private information� Then there is no need to
check at runtime whether the code has permission to read
private information	 we can simply trust it� since the prop�
erty guarantees that the information will not be improperly
disclosed� This is the approach taken in this paper� We are
interested in developing a type system for a concurrent pro�
gramming language and exploring the secure��ow properties
that can be shown to hold for all well�typed programs� With
such a type system� code can be type checked for secure��ow
violations just once� Code that type checks can be allowed
to run and access private information without any further
checks�� Type checking might be done by a client
s security
architecture� Another way it might be done is at a code cer�
ti�cation site� For example� e�orts are underway at some
companies in the U�S� to �certify� the security of Java com�
pilation units used in electronic commerce servers� �It is
understandable why consumer con�dence is low here given
the rash of stolen credit card numbers despite the use of
encryption�� Such a site might apply a type checker as an
initial step in certifying code�

This paper continues our earlier work �VSI��� VS��b�
VS��a� on the relationship between typing� security proper�
ties� and semantics� but now in a concurrent setting� The
paper presents the following results�

�� We show that the type system of �VSI��� is no longer
su
cient to guarantee a desirable security property�
called noninterference� if we add threads to our lan�
guage� The noninterference property is intended to
assert that information cannot �ow from high vari�
ables to low variables	 basically� it says that the �nal
values of low variables are independent of the initial
values of high variables�

�� We show that the noninterference property can be re�
stored in a multi�threaded language by requiring the
guards of while loops to have type low and by re�
quiring while loops themselves to have type low cmd�
�Conditionals do not need to be restricted�� This is
the main result of the paper�

�� Crucial to the above result� however� is the use of
purely nondeterministic thread scheduling� It is not

�We do not mean to suggest that such a type system would address
all security concerns� Integrity properties� for instance� might well be
best handled by code signing�

�

clear how such scheduling can be implemented in prac�
tice� We show that with more deterministic schedul�
ing� such as round�robin time slicing �which is used in
the implementation of Java threads in Windows NT
����� the noninterference property does not hold� We
show that noninterference can be restored� regardless
of the scheduling policy used� by also requiring the
guards of conditionals to have type low�

�� We consider adding a clock to the language� We show
that unless the clock is given type high� noninterference
is not preserved�

The remainder of the paper is organized as follows� In
Section �� we give an example that shows that the type sys�
tem of �VSI��� is insu
cient to ensure noninterference in a
multi�threaded language� In Sections � and �� we formally
de�ne the semantics of our multi�threaded language and its
type system� Then� in Section �� we prove that the type sys�
tem guarantees the noninterference property� In Section ��
we explore how adding a clock to the language a�ects the
noninterference property� In Section �� we consider the con�
sequences of using a less nondeterministic �but more imple�
mentable� semantics of concurrency� In Section �� we discuss
some interactions among the noninterference property and
language semantics� Finally� in Section �� we discuss some
related work�

� The E�ect of Threads on Noninterference

Recently� the authors showed that a Denning�style secure�
�ow analysis of imperative programs can be formulated as a
type system �VSI���� For example� suppose that we wish to
support two security classes� L �low� and H �high�� Then
we can use these security classes as the types of program
variables� Thus� for variables x and y� we can say x � H to
indicate that x holds high�security information and y � L to
indicate that y holds low�security information� And then an
improper assignment like y �� x can be caught as a type
error� Note� however� that the opposite assignment x �� y
should be allowed	 to deal with this we introduce subtyping
into our type system and say that L � H� More subtly� the
type system must also guard against implicit information
�ows� as seen in a program like

if even�x� then y �� � else y �� ��

which indirectly copies the last bit of x into y� To deal
with such implicit �ows� the type system also classi�es pro�
gram commands as having either type H cmd or L cmd 	
intuitively� a command of type H cmd cannot transmit any
information to L variables and hence can safely be used in
the branches of a conditional whose guard has type H�

In �VSI���� it is shown that the type system ensures that
every well�typed program c satis�es a noninterference prop�
erty� which can be described as follows� suppose that � and
� are two memories that agree on all L variables and that c
can be run successfully starting from both � and �� yielding
�nal memories �� and ��� Then �� and �� also agree on all
L variables� Intuitively� this means that information cannot
�leak� from H variables to L variables� since the �nal val�
ues of L variables are independent of the initial values of H
variables�� Furthermore� programs can be checked automat�
ically for type correctness� by doing type inference �VS��b��

�It is possible� however� for information about H variables to leak
to an outside observer who can observe whether c halts� aborts� or
fails to terminate� or how long c takes to terminate� See �VS��a� for
some approaches to eliminating such covert information �ows�

However� the language considered in �VSI��� is sequen�
tial� while mobile programs �such as Java applets� are often
multi�threaded� For this reason� it is important to extend
our analysis to deal with a multi�threaded language and to
see how the noninterference property is a�ected by the pres�
ence of concurrency� This is the main goal of this paper�

We begin with an example that shows that the type sys�
tem of �VSI��� is no longer su
cient to ensure noninterfer�
ence if we extend our language with concurrent threads that
communicate via a shared memory� The program� which
consists of three threads� is given in Figure �� Assume that
PIN � H var and result � L var � Then each of the threads in
this program can be typed under the type system of �VSI����
�The typing gives trigger� and trigger� type H var � and
maintrigger and mask type L var ��

But� if the program is run in a memory where initially
maintrigger � �� trigger� � �� trigger� � �� result �
�� mask is a power a �� and PIN is an arbitrary natural num�
ber less twice mask� then� assuming that scheduling is fair
�i�e� each thread is scheduled in�nitely often�� the program
eventually halts with the value of PIN copied into result�
Thus the noninterference property is violated�

To restore the noninterference property in this concur�
rent setting� we impose two new restrictions on the typing
of while loops� we require that the guard of a while loop
have type L� and we require the while loop itself to get type
L cmd � The new restrictions succeed in ruling out the above
program�since trigger� and trigger� have type H� they
cannot be used in the guards of the while loops in threads
� and ��

In the next three sections� we develop these ideas pre�
cisely� proving that the new restrictions on while loops are
su
cient to restore the noninterference property for multi�
threaded programs�

� Syntax and Semantics

Threads are written in the simple imperative language�

�phrases� p ��� e j c

�expressions� e ��� x j n j e� � e� j
e� � e� j e� � e� j � � �

�commands� c ��� x �� e j c�	 c� j
if e then c� else c� j
while e do c

Metavariable x ranges over identi�ers and n over integer
literals� Integers are the only values	 we use � for false and
nonzero for true� Note that expressions are all pure �i�e�
they do not cause side e�ects� and total �i�e� they do not
contain partial operations like division��

The concurrent systems that we consider here consist
simply of a set of commands �the threads� that run concur�
rently	 we do not consider facilities for creating new threads�
Following the approach taken in Cli� Jones
s �o�� �Jon����
we model a system of threads with an object map O� which
is simply a �nite function from thread identi�ers ��� �� � � � �
to commands� In addition� there is a single global memory
�� shared by all threads� that maps identi�ers to integers�
�Note that in this simple context� we don
t need to distin�
guish identi�ers from locations�� The only way that threads
can interact is via the shared memory�

In this paper� we assume for simplicity that expressions
are evaluated atomically� Thus we simply extend a memory
� in the obvious way to map expressions to integers� writing
��e� to denote the value of expression e in memory �� Note

�

� Thread ��

while mask �� � do
while trigger� � � do

�
result �� result � mask� �� bitwise �or�
trigger� �� ��
maintrigger �� maintrigger	��
if maintrigger � � then trigger� �� �

� Thread ��

while mask �� � do
while trigger� � � do

�
result �� result
 �mask� �� bitwise �and� with the complement of mask
trigger� �� ��
maintrigger �� maintrigger	��
if maintrigger � � then trigger� �� �

� Thread ��

while mask �� � do
maintrigger �� ��
if �PIN
 mask
 � � then

trigger� �� �
else

trigger� �� ��
while maintrigger �� � do

�
mask �� mask � ��

trigger� �� ��
trigger� �� �

Figure �� A multi�threaded program that leaks information

�

that ��e� is always de�ned� provided that every identi�er
occurring in e is in the domain of �� which will always be
the case if e is well typed�

As in Gunter �Gun���� we de�ne the semantics of com�
mands via transitions�

�update� x � dom���

�x �� e� ��
s
����x �� ��e��

�sequence� �c�� ��
s
����

�c�	 c�� ��
s
���c�� �

��

�c�� ��
s
���c��� �

��

�c�	 c�� ��
s
���c��	 c�� �

��

�branch� ��e� nonzero

�if e then c� else c�� ��
s
���c�� ��

��e� � �

�if e then c� else c�� ��
s
���c�� ��

�loop� ��e� � �

�while e do c� ��
s
���

��e� nonzero

�while e do c� ��
s
���c	while e do c� ��

These rules de�ne a transition relation
s
�� on con�gura�

tions� A con�guration is either a pair �c� �� or simply a
memory �� In the �rst case� c is the command yet to be
executed	 in the second case� the command has terminated�

yielding �nal memory �� We write
s
��

k
for the k�fold self

composition of
s
��� and

s
��

�

for the re�exive� transitive

closure of
s
���

Next we have two rules specifying the global transitions
that can be made by a system of threads�

�global� O��� � c

�c� ��
s
����

�O� ��
g
���O � �� ���

O��� � c

�c� ��
s
���c�� ���

�O� ��
g
���O�� �� c��� ���

The semantics� at the global level� is thus purely nondeter�
ministic� �At this point� we don
t even require that schedul�
ing be fair�� How to implement this semantics is an open
question	 this will be discussed further in Sections � and ��

� The Type System

Here are the types used by our type system�

�data types� 	 ��� L j H
�phrase types�
 ��� 	 j 	 var j 	 cmd

For simplicity� we limit the security classes here to just L
and H	 it is possible to generalize to an arbitrary partial
order of security classes�

Our type system� whose rules are given in Figure �� al�
lows us to prove typing judgments of the form � � p �
 as
well as subtyping judgments of the form
� �
�� Here �
denotes an identi�er typing� which is a �nite function from
identi�ers to phrase types�

If � � c �
 for some
� then we say that c is well typed
under �� Also� if O��� is well typed under � for every � �
dom�O�� then we say that O is well typed under ��

As compared with the type system of �VSI���� the typ�
ings of while loops are here restricted in two ways� �rst�
the guard of a while loop must have type L� and second�
the while loop itself can only get type L cmd �

� Type Soundness

We begin with three lemmas that establish the key proper�
ties ensured by the type system	 these lemmas are then used
to prove that well�typed programs have the noninterference
property�

Lemma ��� �Simple Security� If � � e � L� then every
identi�er in e has class L�

Proof� By induction on the structure of e�

Lemma ��� �Con�nement� If � � c � H cmd� then every
identi�er assigned to in c has class H� and c is guaranteed to
terminate successfully from any memory � where dom��� �
dom����

Proof� By induction on the structure of c� and using the fact
that c cannot contain any while loops�

Lemma ��� �Subject Reduction� If � � c � 	 cmd and

�c� ��
s
���c�� ���� then � � c� � 	 cmd�

Proof� By induction on the structure of c�
If c is of the form c�	 c�� then it follows that � � c� �

	 cmd and � � c� � 	 cmd � �The argument for this is com�
plicated somewhat by the presence of subtyping�� If the
transition is by the second rule �sequence��

�c�� ��
s
���c��� �

��

�c�	 c�� ��
s
���c��	 c�� �

��

then by induction � � c�� � 	 cmd � and so by rule �compose�
� � c��	 c� � 	 cmd � If the transition is by the �rst rule
�sequence�� the argument is simpler�

If c is of the form while e do c�� then 	 must be L� and
we must have � � c� � L cmd � and so � � c�	while e do c� �
L cmd �

The case of if e then c� else c� is similar�

We also need a lemma about the execution of a sequential
composition�

Lemma ��� If �c�� ��
s
��

k
�c��� �

��� then �c�	 c�� ��
s
��

k

�c��	 c�� �
��� If �c�� ��

s
��

k
��� then �c�	 c�� ��

s
��

k
�c�� �

���

Proof� By induction on k�

De�nition ��� Given an identi�er typing �� we say that
memories � and � are equivalent� written ����� if �� ��
and � have the same domain and � and � agree on all L
identi�ers�

We also say that two commands are equivalent if this can
be shown from the following three rules�

�� If c � c�� then c��c
��

�� If c and d have type H cmd� then c��d�

�

�ident� ��x� �

� � x �

�int� � � n � 	

�r�val� � � e � 	 var
� � e � 	

�sum� � � e� � 	� � � e� � 	
� � e� � e� � 	

�assign� � � x � 	 var � � � e � 	
� � x �� e � 	 cmd

�compose� � � c� � 	 cmd � � � c� � 	 cmd
� � c�	 c� � 	 cmd

�if� � � e � 	� � � c� � 	 cmd � � � c� � 	 cmd
� � if e then c� else c� � 	 cmd

�while� � � e � L� � � c � L cmd
� � while e do c � L cmd

�base� L � H

�reflex�
 �

�cmd�� 	� � 	�
	� cmd � 	� cmd

�subtype� � � p �
��
� �
�
� � p �
�

Figure �� Typing and subtyping rules

�� If c��c
� and d��d

�� then c	 d��c
�	 d��

Finally� we extend equivalence to con�gurations by de�ning
�c� �����d� �� if c��d and �����

Why do we need a notion of equivalence on commands�
Well� we are trying to show that executing a command twice�
from two equivalent memories� leads to equivalent memories�
But to prove this property by induction on the number of
transitions� it is necessary to deal with the fact that the two
executions can proceed quite di�erently� because condition�
als with H guards need not follow the same branches in the
two executions� For this reason� we must prove a more gen�
eral property� roughly speaking� equivalent con�gurations
go to equivalent con�gurations�

Remark� The need for clause � in the above de�nition
can be seen from the following example� Suppose x � H�
d � L cmd � and ����� If � and � disagree about the value
of x� then the command �if x � � then c� else c��	 d could
go to �c�	 d� �� under � and go to �c�	 d� �� under �� Thus we
need c�	 d��c�	 d� but these don
t have type H cmd � End
of Remark�

Theorem ��� �Sequential Noninterference� Suppose c

and d are well typed under � and �c� �����d� ��� If �c� ��
s
��

�c�� ���� then there exists �d�� ��� such that �d� ��
s
��

�

�d�� ���

and �c�� ������d
�� ���� And if �c� ��

s
�� ��� then there exists

�� such that �d� ��
s
��

�

�� and �����
��

Proof� By induction on the structure of c�
We begin by dealing with the case when c and d both

have type H cmd � In this case� by the Con�nement Lemma
c does not assign to any variables of type L� Therefore�

if �c� ��
s
���c�� ���� then we can let �d�� ��� be �d� �� since

�d� ��
s
��

�

�d� �� and �c�� ������d� ��� This is because c
� must

also have type H cmd by the Subject Reduction Lemma�

If� instead� the transition is �c� ��
s
����� then we can appeal

again to the Con�nement Lemma to get that neither c nor
d assigns to any variables of type L� and that there exists ��

such that �d� ��
s
��

�

���� Since �����
�� we
re done�

We now deal with the case when c and d do not both
have type H cmd by considering in turn the possible forms
of c�

Case x �� e� Since c and d do not both have type H cmd �
we must have c � d� and therefore c does not have
type H cmd � Hence x must have type L var and e
must have type L� So� by the Simple Security Lemma�
every identi�er in e has class L� Therefore� since �����
we have ��e� � ��e� and ��x �� ��e������x �� ��e���

Case c�	 c�� Since c and d do not both have type H cmd � d
must have the form d�	 d�� where c���d� and c���d��

So if �c�� ��
s
���c��� �

��� then by induction there ex�

ists �d��� �
�� such that �d�� ��

s
��

�

�d��� �
�� and �c��� �

����

�d��� �
��� So by Lemma ���� �d�	 d�� ��

s
��

�

�d��	 d�� �
���

And� by clause � of the de�nition of �� � we have

�c��	 c�� �
�����d

�

�	 d�� �
��� Similarly� if �c�� ��

s
����� then

by induction there exists �� such that �d�� ��
s
��

�

�� and

�����
�� Again by Lemma ���� �d�	 d�� ��

s
��

�

�d�� �
���

�We remark that the proof would break down here if while loops
were typed as in �VSI���� Under those rules� d could contain while

loops� and hence might not be assured of terminating�

�

Case if e then c� else c�� Since c and d do not both have
type H cmd � we must have c � d� and c does not have
type H cmd � Hence e � L� As above� this implies that

��e� � ��e�� So if �if e then c� else c�� ��
s
���c�� ���

then ��e� � ��e� is nonzero� so

�if e then c� else c�� ��
s
���c�� ���

And if �if e then c� else c�� ��
s
���c�� ��� then

�if e then c� else c�� ��
s
���c�� ���

Case while e do c�� Since while loops cannot have type
H cmd � we must have c � d� and e � L� Again� this im�

plies that ��e� � ��e�� So if �while e do c�� ��
s
����

then �while e do c�� ��
s
���� And if

�while e do c�� ��
s
���c�	while e do c�� ���

then

�while e do c�� ��
s
���c�	while e do c�� ���

Remark� The Sequential Noninterference theorem says
that if �c� �����d� �� and �c� �� reaches a con�guration in one
step� then �d� �� reaches an equivalent con�guration in zero
or more steps� This bound cannot be strengthened� For
example� suppose that c is c�	 c� and d is d�	 c�� where c�
and d� have type H cmd � but c� has type L cmd � Suppose
further that �c�� �� goes to �� in one step� but �d�� �� goes
to �� in �� steps� Then �c�	 c�� �� goes in one step to �c�� �

���
But �d�	 c�� �� takes �� steps to get to �c�� �

��� And we need
d� to run to completion in order to get the required program
equivalence� since c� is not equivalent to d��	 c� for any d���
under our de�nition of �� � End of Remark�

We now wish to apply the Sequential Noninterference
Theorem to establish a Concurrent Noninterference Theo�
rem� We begin with a lemma� which depends crucially on
our nondeterministic scheduling� that shows that any execu�
tion of a thread can be �lifted� to an execution of the global
system�

Lemma ��	 �Global Execution� Suppose O��� � c� If

�c� ��
s
��

k
�c�� ���� then �O� ��

g
��

k
�O�� �� c��� ���� And if

�c� ��
s
��

k
��� then �O� ��

g
��

k
�O � �� ����

Proof� By induction on k�
If k � �� then �c� �� � �c�� ���� so �O�� �� c��� ��� �

�O� ��� Hence �O� ��
g
��

�

�O�� �� c��� ����

For the inductive step� if �c� ��
s
��

k��
�c�� ���� then there

exists �c��� ���� such that �c� ��
s
��

k
�c��� ����

s
���c�� ���� By

induction� �O� ��
g
��

k
�O�� �� c���� ����� And by the second

rule �global��

�O�� �� c
���� ����

g
���O�� �� c

����� �� c
��� ����

Since O�� �� c����� �� c�� � O�� �� c��� it follows that

�O� ��
g
��

k��
�O�� �� c��� ����

The case where �c� ��
s
��

k��
�� is similar�

Remark� This lemma remains true if we assume that
scheduling is fair� since we are dealing only with �nite com�
putations here� But if we assume bounded fairness� so that
there is a �xed bound b on the number of transitions a thread
can make before another thread gets a turn� then the lemma
holds only for k � b� End of Remark�

De�nition ��� O���O� if dom�O�� � dom�O�� and for
all � � dom�O��� O������O����� Also� �O�� �����O�� �� if
O���O� and �����

Corollary ��
 �Concurrent Noninterference� Suppose
O� and O� are well typed under � and �O�� �����O�� ���

If �O�� ��
g
���O�

�� �
��� then there exists �O�

�� �
�� such that

�O�� ��
g
��

�

�O�

�� �
�� and �O�

�� �
�����O

�

�� �
���

Proof� If �O�� ��
g
���O�

�� �
��� then �by inspection of the rules

�global�� there exists � such that O���� � c and either

�� �c� ��
s
���c�� ��� and O�

� � O��� �� c��� or else

�� �c� ��
s
���� and O�

� � O� � ��

Let d � O����� Then �c� �����d� ��� since �O�� �����O�� ���
So� in the �rst case� by the Sequential Noninterference The�

orem there exists �d�� ��� such that �d� ��
s
��

�

�d�� ��� and
�c�� ������d

�� ���� Hence� by the Global Execution Lemma�

�O�� ��
g
��

�

�O��� �� d��� ���� Finally�

�O��� �� c
��� ������O��� �� d

��� ����

The second case is similar�

Let fg denote the empty object map� We can give a �nal
corollary�

Corollary ��� Suppose that O is well typed under � and

����� If �O� ��
g
��

�

�fg� ���� then there exists �� such that

�O� ��
g
��

�

�fg� ��� and �����
��

Proof� By an easy generalization of the Concurrent Non�
interference Corollary� it follows that there exists �O�� ���

such that �O� ��
g
��

�

�O�� ��� and �fg� ������O
�� ���� Then

O� � fg by de�nition of �� �

� Adding a Clock to the Language

Many languages include a system clock that can be read by
a running program	 for instance� Java includes a function
System�currentTimeMillis�
� One would expect that such
a clock would have implications for secure information �ow�
since it makes timing information observable internally� In
this section� we explore this issue�

To include a clock� we use a special identi�er t� initially
�� which tells the number of transition steps that have been
made in the current program execution� We can make t
read�only by giving it either type L or H� rather than L var
orH var � We must modify the semantics of some commands
to update t appropriately	 the modi�ed transitions are given
in Figure ��

Now� if we assume t � L� then we clearly run into trouble
with the noninterference property� For example� suppose
that x � H� y � L� and c � H cmd is a command that takes ��
steps to �nish� Consider the following program� which has
just one thread�

�

�update� x � dom���

�x �� e� ��
s
����x �� ��e�� t �� ��t� � ��

�branch� ��e� nonzero

�if e then c� else c�� ��
s
���c�� ��t �� ��t� � ���

��e� � �

�if e then c� else c�� ��
s
���c�� ��t �� ��t� � ���

�loop� ��e� � �

�while e do c� ��
s
����t �� ��t� � ��

��e� nonzero

�while e do c� ��
s
���c	while e do c� ��t �� ��t� � ���

Figure �� Modi�ed transitions to maintain a clock t

if x � � then c�
if t � �� then y �� � else y �� �

Assuming that x is either � or � initially� this program copies
x into y� By checking the value of t� the program can de�
termine whether c was executed or not� which in turn tells
whether x � � or not�

But if we assume� instead� that t � H� then the above
program is ill�typed� because the branches of the second
conditional do not have type H cmd � And� indeed� if t � H�
then the proof of Theorem ��� still goes through� and so the
noninterference property is preserved�

� Other Scheduling Policies

The semantics of concurrency given by rule �global� is
purely nondeterministic	 the rule simply says that at ev�
ery step� any thread can be selected to run for a step� It
is important to understand that the noninterference results
of the last section depend crucially on this nondetermin�
ism� For example� Corollary ��� says that if ���� and there
is some way of scheduling the threads of �O� �� that leads
to termination� then there is some way of scheduling the
threads of �O� �� that leads to an equivalent result� But the
two schedules can be very di�erent� In particular� even if the
�rst schedule treats all threads equally �in the sense that it
gives each thread a roughly equal amount of CPU time�� the
second schedule might have to greatly favor one thread over
the others� Therefore� if we impose additional constraints
on the way scheduling is done� we may falsify the Global
Execution Lemma and hence the noninterference property��

For example� suppose that scheduling is done by round�
robin time slicing� with a time�slice of b steps� Let x � H
and y � L and consider the following two threads�

� Thread ��

if x � � then c�
y �� �

� Thread ��

y �� �

�Thus our situation is quite di�erent from the usual one in which
one proves the correctness of a concurrent program with respect
to a nondeterministic scheduler� There� one can immediately say
that the program is correct with respect to any scheduler that one
might care to implement� because any schedule produced by an imple	
mented scheduler could have been produced by the nondeterministic
scheduler�

Suppose further that c � H cmd is a command that takes
longer than b steps to �nish� If ��x� � �� ��x� � �� and
��y� � ��y� � �� then ����� And from �� we can terminate
in a state where y � �� but from � we cannot	 from �� we
can only terminate in a state where y � ��

In terms of our proofs� here
s what is going on�

��if x � � then c�	 y �� �� ��
s
���y �� �� ���

so by the Sequential Noninterference theorem there exists ��

such that

��if x � � then c�	 y �� �� ��
s
��

�

�y �� �� ����

and ����
�� But� although �O� ��

g
���O�� �� �y �� ���� ��� it

is not the case that �O� ��
g
��

�

�O�� �� �y �� ���� ���� because
the time�slicing scheduler will not let thread � run for such
a long time without giving a turn to thread ��

Another approach to scheduling is probabilistic� One
might attempt to approximate the e�ect of rule �global�
by �ipping coins at each step to select the next thread to
run� While such an implementation is in some ways faithful
to rule �global�� the adoption of a probabilistic seman�
tics makes it possible to create probabilistic covert channels
�Gra���� which cannot be addressed without re�ning the no�
tion of noninterference� This point is discussed in more de�
tail in Section ��

To preserve noninterference in the face of an arbitrary
scheduler� it appears necessary to require the guards of con�
ditionals to have type L� If this is done� we can strengthen
the Sequential Noninterference Theorem to the following
form�

Theorem
�� �Lockstep Execution� Suppose c is well

typed under � and ����� If �c� ��
s
���c�� ���� then there

exists �� such that �c� ��
s
���c�� ��� and �����

�� And if

�c� ��
s
����� then there exists �� such that �c� ��

s
���� and

�����
��

This Lockstep Execution result is strong enough to estab�
lish Concurrent Noninterference� regardless of how schedul�
ing is done� Anything done under � can now be exactly
mirrored under �� Also� Lockstep Execution implies that
we can add a clock t and even give it type L� since program
timing now cannot depend on the values of H variables� Un�
fortunately� restricting conditionals in this way is likely to
be quite burdensome in practice�

On the other hand� it can be useful for guarding against
timing attacks� Kocher� for example� describes a timing

�

attack on RSA modular exponentiation to learn a private
key �Koc���� Such attacks are possible by merely knowing
the source code for an algorithm� Typing conditionals as
restrictively as while loops rejects code susceptible to this
kind of attack�

� A Closer Look at Noninterference

Our noninterference property basically says that the �nal
values of low variables are independent of the initial val�
ues of high variables� More precisely� it says that changing
the initial values of high variables cannot a�ect the set of
possible �nal values of low variables� Hence� observing the
�nal values of low variables cannot reveal anything about
the initial values of high variables�

But consider the following example� which is given by
McLean �McL���� Let x be a high variable whose value is
between � and ��� and let y be a low variable� Consider the
following two threads�

� Thread ��

y �� x

� Thread ��

y �� rand����

where rand����
 returns a random integer between � and
����

Now� this program satis�es our noninterference property�
regardless of the value of x� the �nal value of y can be any
integer between � and ���� But this program doesn
t seem
to be secure� If we were to run the program repeatedly� we
would expect a sequence of �nal values for y something like

��� ��� ��� ��� ��� ��� �� ��� � � �

and we would feel quite con�dent that �in this case� the
value of x is ���

How can this be explained� The answer is that we have
implicitly changed the semantics of our language from the
purely nondeterministic semantics of rule �global� to some
kind of probabilistic semantics� In a nondeterministic se�
mantics� outcomes are either possible or impossible� with
no further distinction� But in a probabilistic semantics�
outcomes occur according to some probability distribution�
which makes it possible to make probabilistic inferences�

In our example� if we assume that each thread has an
equal probability of being scheduled at each step and that
rand����
 generates all numbers in the range � to ��� with
equal probability� then we can see that the �nal value of y
will be the initial value of x with probability ��� ���� and
will be any other number between � and ��� with probabil�
ity � ���� Hence we can be con�dent of correctly guessing
the initial value of x by running the program repeatedly and
picking the most common �nal value of y� To rule out such
probabilistic inferences� we would need a more re�ned notion
of noninterference that requires that the probability distri�
bution of the �nal value of y be independent of the initial
value of x� The program would not satisfy such a probabilis�
tic notion of noninterference� because changes to the initial
value of x do change the distribution of the �nal value of y�

Thus we can see that the appropriate formulation of the
noninterference property depends on the kind of language
being considered� In all cases� the idea is that the �nal val�
ues of low variables are independent of the initial values of

high variables� For a deterministic language� this means that
changing the initial values of high variables cannot change
the �nal values of low variables� For a nondeterministic lan�
guage� as considered in this paper� it means that changing
the initial values of high variables cannot change the set
of possible �nal values of low variables� And for a proba�
bilistic language� it means that changing the initial values
of high variables cannot change the distribution of possible
�nal values of low variables��

It can� of course� be argued that a nondeterministic se�
mantics as used in this paper is unrealistic� because any
real implementation would display probabilistic behavior�
It is perhaps worth remarking that a nondeterministic se�
mantics can be regarded as an abstraction of a probabilis�
tic semantics in which one equates �possible� with �occurs
with nonzero probability�� For instance� an implementa�
tion of rule �global� that �ips coins at each step to decide
which thread to run has the property that each thread has
a nonzero probability of being selected at each step� Indeed�
any terminating execution possible under rule �global� has
a nonzero probability of occurring in the implementation�
Therefore� Corollary ��� does hold for this implementation�
However� one has to be careful with this view of possibility�
Though the corollary assures us that� under such an im�
plementation� one can never be certain of the initial values
of high variables based on observing the �nal values of low
variables� it does not mean that one cannot guess the initial
values with high probability�

It is also worth remarking that thread � in the example
above is rejected by our type system� This suggests that
well�typed programs in our system� if given a probabilistic
semantics� might perhaps satisfy some sort of probabilistic
noninterference property� But it is easy to see that our type
system would not rule out probabilistic timing channels� For
example� suppose x is a high varible whose value is either �
or �� y is a low variable� and c is a high command that takes
a long time to execute� Consider the following two threads�

� Thread ��

if x � � then �c�c
�
y �� �

� Thread ��

c�
y �� �

If thread scheduling works by �ipping a coin at each step
to decide which thread to run� then with high probability
the two threads run at about the same rate� Hence� with
high probability the value of x ends up being copied into
y� Extending our type system to deal with a probabilistic
language remains an area for future study�

Finally� it is well known that in some cases noninterfer�
ence is too restrictive� In particular� noninterference cannot
accommodate information downgrading� For example� infor�
mation is e�ectively downgraded when it is encrypted� The

�In the security literature� there have been many noninterference	
like properties proposed� Noninterference was
rst proposed by
Goguen and Meseguer �GM��� for deterministic systems� Later�
McCullough �McC��� proposed Generalized Noninterference and Re	
strictiveness for nondeterministic systems� and Gray �Gra�
� Gra���
proposed P	Restrictiveness and Information Flow Security for prob	
abilistic systems� See also McLean �McL�
� for a comparison of
some of these properties� and Wittbold and Johnson �WJ�
� for
an information	theoretic account of possibilistic and probabilistic
noninterference�

�

problem is that ciphertext is sensitive to changes in high
cleartext� yet we would often like to treat the ciphertext as
low� This is a clear violation of noninterference �McL����

	 Related Work

Analyzing code for various security properties has a long
history� Denning �Den��� Den��� DD��� developed a form
of program certi�cation for detecting secure �ow violations
in code� It was inspired by the work of Bell and LaPadula
�BL���� Fenton �Fen���� and Lampson �Lam���� among oth�
ers� There is also the classic operating systems protection
work of Harrison� Ruzzo� and Ullman who showed that the
problem of determining whether a program� comprised of
simple primitives for updating an access matrix� leaks an
access right is undecidable �HRU���� See also �DDG����
for an excellent discussion about solvability and complexity
issues associated with formal systems for reasoning about
program security�

More recently� there is the work of He and Gligor �HG���
who describe ways to eliminate timing channels in the source
code of trusted computing bases using an automated tool�
Ban!atre� Bryce� and Le M"etayer �BBLM��� attempt to treat
secure information �ow in a nondeterministic setting	 they
give a compile�time technique for detecting �ow violations
in sequential programs�

Other more recent e�orts are more closely related to our
work in that they too attempt to characterize some sort of
security analysis as a formal system of types� Palsberg and
#rb$k �P#��� have developed a system to manage trust
in the lambda calculus� It is not clear what an appropri�
ate notion of type soundness is for their trust system� given
that explicit coercions between trusted and untrusted enti�
ties are available in the core calculus� Any suitable notion
should speak to security in some way� Abadi �Aba��� has
developed a system of typing rules for ensuring secrecy in
cryptographic protocols� These protocols are expressed in
an extension of the pi calculus called spi� Type soundness is
that of testing equivalence between two terms P� and P���
where � and �� are substitutions of values for variables and
P is a well�typed spi term� In other words� no other spi term�
called an observer� can distinguish P� from P��� Heintze
and Riecke �HR��� attempt to re�ne Denning
s analysis us�
ing more detailed type structure� They also extend their
type system for a concurrent language but do not treat type
soundness in this case� Finally� Myers and Liskov �ML���
describe a decentralized approach to downgrading informa�
tion in a secure information �ow setting� but its soundness
also is not addressed� Some sort of formal justi�cation for
downgrading is needed�

�
 Conclusion

It is clear that with just ordinary thread implementations�
users can exploit seemingly innocuous features like thread
priorities and scheduling to easily build reliable covert chan�
nels� An o��the�shelf implementation of Java is more than
enough here� Furthermore� the bandwidth of such channels
is not an issue� for private keys and credit card numbers
require little bandwidth� A truly secure programming lan�
guage demands fundamental changes in language design and
an understanding of the relationship between semantics and
security�

�� Acknowledgments

This material is based upon activities supported by the Na�
tional Science Foundation under grants CCR�������� and
CCR��������� We are grateful to Mart"%n Abadi� Paul At�
tie� Nevin Heintze� John McLean� and Jon Riecke for helpful
discussions� and to Scott Smith for shepherding this paper�

References

�Aba��� Mart"%n Abadi� Secrecy by typing in crypto�
graphic protocols� In Proceedings TACS �	
�
September �����

�BBLM��� J� Ban!atre� C� Bryce� and D� Le M"etayer�
Compile�time detection of information �ow in
sequential programs� In Proceedings �rd Euro�
pean Symposium on Research in Computer Se�
curity� pages ������ Brighton� UK� November
����� Lecture Notes in Computer Science ����

�BL��� David Bell and Leonard LaPadula� Secure com�
puter systems� Mathematical foundations and
model� Technical Report M������� MITRE
Corp�� Bedford� MA� �����

�DD��� Dorothy Denning and Peter Denning� Certi��
cation of programs for secure information �ow�
Communications of the ACM� ��������������
�����

�DDG���� D� Denning� P� Denning� S� Garland� M� Harri�
son� and W� Ruzzo� Proving protection systems
safe� Technical Report CSD TR ���� Purdue
University� November �����

�Den��� Dorothy Denning� Secure Information Flow in
Computer Systems� PhD thesis� Purdue Univer�
sity� West Lafayette� IN� May �����

�Den��� Dorothy Denning� A lattice model of secure in�
formation �ow� Communications of the ACM�
�������������� �����

�Fen��� J� Fenton� Information Protection Systems�
PhD thesis� University of Cambridge� �����

�GM��� J� Goguen and J� Meseguer� Security policies
and security models� In Proceedings �	�� IEEE
Symposium on Security and Privacy� pages ���
��� Oakland� CA� �����

�GMPS��� Li Gong� Marianne Mueller� Hemma Pra�
fullchandra� and Roland Schemers� Going be�
yond the sandbox� An overview of the new se�
curity architecture in the Java Development Kit
���� In Proceedings USENIX Symposium on In�
ternet Technologies and Systems� Monterey� CA�
December �����

�Gra��� James W� Gray� III� Probabilistic interference�
In Proceedings �		� IEEE Symposium on Secu�
rity and Privacy� pages �������� Oakland� CA�
May �����

�Gra��� James W� Gray� III� Toward a mathematical
foundation for information �ow security� In
Proc� �		� IEEE Symp� on Research in Secu�
rity and Privacy� pages ������ Oakland� CA�
May �����

�

�Gun��� Carl A� Gunter� Semantics of Programming
Languages� The MIT Press� �����

�HG��� J� He and V� Gligor� Formal methods and auto�
mated tool for timing�channel identi�cation in
TCB source code� In Proceedings �nd European
Symposium on Research in Computer Security�
pages ������ November �����

�HR��� Nevin Heintze and Jon Riecke� The SLam Cal�
culus� Programming with secrecy and integrity�
In Proceedings of the �
th ACM Symposium on
Principles of Programming Languages� �����

�HRU��� M� Harrison� W� Ruzzo� and J� Ullman� Protec�
tion in operating systems� Communications of
the ACM� �������������� August �����

�Jon��� Cli� B� Jones� Some practical problems and
their in�uence on semantics� In Proceedings of
the �th European Symposium on Programming�
volume ���� of Lecture Notes in Computer Sci�
ence� pages ����� Berlin� April ����� Springer�
Verlag�

�Koc��� Paul Kocher� Timing attacks on implementa�
tions of Di
e�Hellman� RSA� DSS� and other
systems� In Proceedings ��th Annual Crypto
Conference� August �����

�Lam��� Butler W� Lampson� A note on the con�ne�
ment problem� Communications of the ACM�
��������������� �����

�McC��� Daryl McCullough� Noninterference and the
Composability of Security Properties� In Pro�
ceedings �	�� IEEE Symposium on Security and
Privacy� pages �������� Oakland� CA� �����

�McL��� John McLean� Security models and information
�ow� In Proceedings �		� IEEE Symposium on
Security and Privacy� pages �������� Oakland�
CA� �����

�ML��� Andrew C� Myers and Barbara Liskov� A de�
centralized model for information �ow control�
In Proceedings of the ��th ACM Symposium on
Operating Systems Principles� October �����

�P#��� Jens Palsberg and Peter #rb$k� Trust in the
��calculus� In Proceedings �		
 Static Analysis
Symposium� Lecture Notes in Computer Science
���� �����

�VS��a� Dennis Volpano and Geo�rey Smith� Elimi�
nating covert �ows with minimum typings� In
Proc� ��th IEEE Computer Security Founda�
tions Workshop� pages �������� IEEE� June
�����

�VS��b� Dennis Volpano and Geo�rey Smith� A type�
based approach to program security� In Proc�
TAPSOFT �	
� volume ���� of Lecture Notes
in Computer Science� pages �������� Springer�
Verlag� April �����

�VSI��� Dennis Volpano� Geo�rey Smith� and Cynthia
Irvine� A sound type system for secure �ow anal�
ysis� Journal of Computer Security� �����������
���� �����

�WBDF��� Dan S� Wallach� Dirk Balfanz� Drew Dean� and
Edward W� Felten� Extensible security archi�
tectures for java� Technical Report ������� De�
partment of Computer Science� Princeton Uni�
versity� April �����

�WJ��� J� Todd Wittbold and Dale M� Johnson� In�
formation �ow in nondeterministic systems� In
Proceedings �		� IEEE Computer Society Sym�
posium on Research in Security and Privacy�
pages �������� Oakland� CA� May �����

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

